溶液中の水素イオン濃度[H+] を表します。濃度が高くなるほ ど、pHの値は低くなります。

電気がどのくらい流れるかを表した値です。 塩類濃度の指標となります。ECは通常、硝 酸態窒素が多いと、高くなる傾向にあります。

リン吸

土壌がリン酸を固定して、不溶性リン酸 にする力です。高いほど、リン酸を固定し やすい土になります。

CEC

保肥力、つまり施肥した肥 料を蓄える力です。値が高 いほど、保肥力が高いとい えます。

石灰、苦土、カリ

土壌に含まれる石灰・苦土・カ リの量です。交換性塩基ともよ ばれ、土壌中でpHを下げる原 因である[H⁺]と交換されます。

リン酸

土壌に含まれるリン酸のうち、 作物が吸収利用可能な有効態 リン酸の量です。

石灰、苦土、カリ、塩基飽和度

CECに対して、どれだけ交換性 🕴 塩基(石灰、苦土、カリ、その 和)で満たされているかを割合 (%)で表したものです。

石灰・苦土比、苦土・カリ比

土壌中の交換性石灰と交換性 苦土、交換性苦土と交換性力 リのバランスです。

銅、亜鉛、マンガン、ホウ素

土壌中に含まれる各種微量要 素の量です。

土壌診断結果の見方

十悔診断結里

١	受付日:		─ 工 璣 訳	沙断 秙 果		圃場No	D.
١			圃場名 施設野菜	面積	リン吸 622	2 (低い) 発行日	
١	氏名	/	キュー・マトー作物名 ハーナス・パロボー かんりょう	土壌型 低地土	CEC 25	5 (高い) ← 担当者	
١	住所	/	TF401石 〈ハウス(促成、半促成長期どり、夏科	火どり > 土 性 壌土	腐植 4	4 %(富む) 分析者	
	基本分析	/ 分析値 基準値		十壤改良資材	•	施肥設計(基肥量)	(kg/10a)

١	基本分析 /	分析值	基準値	
	pH _{(H2} O)	6.7	[6.0 — 6.5]	4 5 6 7 8
	EC(mS/cm)	0.60	[8.0 >	0 0.5 1 1.5 2
	石灰(mg/100g)	476	[350 — 490]	0 200 400 600 800 1000
Ų	苦土 _(mg/100g)	83	[25 — 45]	0 20 40 60 80 100
	カリ _(mg/100g)	156	[15 — 30]	0 20 40 60 80 100
1	リン酸 _(mg/100g)	142	[20 — 30]	0 20 40 60 80 100 120 140
	養分パランス			

養分パランス
r
石灰飽和度®

苦土飽和度⒀	16.7	[<	20]	0	10	20	30	40	
カリ飽和度®	13.3	[<	10	1	0	5	10	15	20	
塩基飽和度®	98	[60	_	80	1	0 20	40	60	80	100	
石灰·苦土比	4.1	[4	_	8	1	0 4	8	12	16	20	
苦土・カリ比	1.3]	2	<		1	0 2		6	- 8	10	

68 [60 - 70]

特別分析	分析值	基準値
------	-----	-----

酸態窒素を測定します。

1100				_			
釗	(ppm)	1.7	[0.5	- 8.0]	0 2 4 6 8 10
₫	至鉛 (ppm)	29.8	[2	- 40]	0 10 20 30 40 50
₹	アンガン (ppm)	182	[50	- 500]	0 200 400 600 800 1000 1200
7	sウ素 (ppm)	2.8	[0.5	— 1.0]	0 1 2
郁	¥酸態窒素(mg/100g)	7	[5	– 10]	0 5 10 15 20
*	: 基準値は施肥前の値にな	っている	ŧす.				

土壌に含まれる窒素量です。露地では熱水抽出性窒素を、施設では硝

成分 施肥標準 施肥対応後 基肥 10.0 10.0 窒素 リン酸 20.0 0.0 基肥 … 40.0 20.0 カリ

5.0~6.0

0.0

施肥対応

pH…やや高くなっています。

苦土、カリ、リン酸…作土中に充分含まれています。

苦土・カリ比は低い…苦土の欠乏症が生じやすいので、気を付けて下さい。

ホウ素…作土中に充分含まれています。

*pHの分析値は、ECの分析値で補正してあります。

◆ ◆留 意 事 項◆ ◆

苦土

窒素とカリは第3花房開花期から各花房開花ごとに追肥する。

1回目の追肥量は窒素2kg/10aで、カリが0kg/10aです。

2回目以降の追肥量は窒素2kg/10aで、カリが0kg/10aです。

なお、草勢が旺盛な場合は追肥を控える。

腐植

広い意味で土の中の有機 物の量を表します。値が高 いほど、有機物が多く、物 理性や保肥力を良くします。

施肥対応量

土壌分析の値に基づき、 施肥対応をした後の値 です。「北海道施肥ガイ ド2015」に基づいていま す。

施肥標準量

各作物の年間施肥量また は基肥量です。「北海道施 肥ガイド2015」に基づいて います。

土壤改良資材欄

分析結果から、値を適正に するために必要な土壌改 良資材の量を計算したもの です。

株式会社丹波屋 常務取締役 肥料部長 豊嶋博美

コメント欄

分析結果に基づいて、バランスの良い土にするための対応策です。